<address id="ftpzp"><track id="ftpzp"></track></address>

      <address id="ftpzp"></address>

      <thead id="ftpzp"><dfn id="ftpzp"><mark id="ftpzp"></mark></dfn></thead>

      English Version設為首頁加入收藏聯系方式
      學術視點 首頁 - 學術視點 - 正文
      楊琛*, Kristina P. Sendova, Zhong Li: Parisian ruin with a threshold dividend strategy under the dual Lévy risk model
      時間:2020-12-11    點擊數:

      Abstract: We consider the threshold dividend strategy where a company’s surplus process is described by thedual Lévyrisk model. Namely, the company chooses to pay dividends at a constant rate only whenthe surplus is above some nonnegative threshold. Classically, such a company is referred to be ruinedimmediately when the surplus level becomes negative. Recently, researchers investigate the Parisianruin problem where the company is allowed to operate under negative surplus for a predeterminedperiod known as the Parisian delay. With the help of the fluctuation identities of spectrally negativeLévyprocesses, we obtain an explicit expression of the expected discounted dividends until Parisianruin in terms of the relevant scale functions and certain probabilities that need to be evaluated for eachspecific Lévyprocess. The optimal threshold level under such a threshold dividend strategy is deduced.Applications and numerical examples are given to illustrate the theoretical results and examine howthe expected discounted aggregate dividends and the optimal threshold level change in response todifferent Parisian delays.

      Keywords: Parisian ruin,Lévyprocess,Threshold dividend strategy,Dual model,Optimality

      本文于2020年1月發表在Insurance: Mathematics and Economics (Vol 90: 135-150)上,楊琛為論文的第一作者兼通訊作者。Insurance: Mathematics and Economics是精算領域公認的頂級期刊,該期刊為經濟與管理學院B+類獎勵期刊。